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Abstract 
 

As scientific data sets grow exponentially in size, the 
need for scalable algorithms that heuristically partition 
the data increases.  In this paper, we describe the three-
step evolution of a hierarchical partitioning algorithm for 
large-scale spatio-temporal scientific data sets generated 
by massive simulations.  The first version of our algorithm 
uses a simple top-down partitioning technique, which 
divides the data by using a four-way bisection of the 
spatio-temporal space.  The shortcomings of this 
algorithm lead to the second version of our partitioning 
algorithm, which uses a bottom-up approach.  In this 
version, a partition hierarchy is constructed by 
systematically agglomerating the underlying Cartesian 
grid that is placed on the data.  Finally, the third version 
of our algorithm utilizes the intrinsic topology of the data 
given in the original scientific problem to build the 
partition hierarchy in a bottom-up fashion.  Specifically, 
the topology is used to heuristically agglomerate the data 
at each level of the partition hierarchy.  Despite the 
growing complexity in our algorithms, the third version of 
our algorithm builds partition hierarchies in less time and 
is able to build trees for larger size data sets as compared 
to the previous two versions. 

1. Three hierarchical partitioning algorithms 

Scalable algorithms are needed to partition tera-scale 
data sets [1, 5].  This is especially true in scientific 
domains, where sizes of the data sets have grown 
exponentially in recent years.  We describe the evolution 
of a hierarchical partitioning algorithm for large-scale 
scientific data sets.  Specifically, large-scale simulation 
programs produce our data sets in mesh format.  A data 
set in mesh format consists of interconnected grids of 
small zones, in which data points are stored.  Figure 1 
depicts the mesh produced from an astrophysics 
simulation of a star in its mid-life.  Mesh data usually 
varies with time, consists of multiple dimensions (i.e., 
variables), and can contain irregular grids.  Musick and 
Critchlow provide a nice introduction to scientific mesh 
data [4]. 

 
Figure 1. A Mesh Data Set Representing a Star 

 
The first and simplest version of our partitioning 

algorithm employs a top-down partitioning technique by 
performing a four-dimensional bisection on the spatio-
temporal space.  The major advantage of this approach is 
the generation of a global decomposition of the data.  
However, this global partitioning comes with three major 
drawbacks.  First, it is computationally too expensive to 
scale well to tera-byte data sets.  This is largely due to its 
need to convert a mesh data file from its original 
simulation-specific format into a consistent vector-based 
representation.  Second, it is not able to capture the 
information stored in the topology of a mesh data set.  
Lastly, the bisection procedure works best when there is a 
uniform density of grid cells throughout the whole 
problem domain.  Typically, however, our domains have 
complex structures such as non-uniform distributions of 
grid cells, irregular boundaries, and unusual topologies.  
Figure 2 shows two examples of such domains. 

 

Figure 2. Examples of Complex Domain Structures 

(a) L-Shaped Domain 

(b) Rectilinear Domain 
with Edges Glued Together 



To address the above issues, our algorithm evolves to a 
bottom-up approach.  First, however, we remove the time 
dimension from the partitioning space and redefine our 
partitions on the three-dimensional spatial structure of the 
data.  This new partition space allows us to produce 
hierarchies that can easily be parallelized for data access.   

The second version of our algorithm (called GRID) 
utilizes a grid-based bottom-up partitioning approach. 
GRID constructs a hierarchy by systematically 
agglomerating the underlying Cartesian grid that is placed 
on a mesh data set.  Specifically, a simple coarsing 
strategy starts at the initial grid configuration and 
iteratively produces coarse level collections of cells from 
fine level collections of grid cells.  Unlike our top-down 
approach, GRID scales well to large data sets, deals 
effectively with irregularities of the grid, and produces 
hierarchies with better structure than the top-down 
algorithm.  However, it is still not able to capture the 
topological information (i.e., the true physical 
relationships of the grid cells) of a mesh data set  

The third version of our algorithm, called 
TOPOLOGY, improves on the previous bottom-up 
approach by utilizing the intrinsic topology of the data 
given in the original scientific problem to build the 
partition hierarchy.  TOPOLOGY uses a two-pass 
approach.  In the first pass, each coarse cell is assigned 
the “best” neighborhood configuration (with respect to its 
rectilinear cell shape).  This operation is a local search on 
the 2N possible neighborhood configurations of a coarse 
cell, where N is the number of dimensions.  For instance, 
in two dimensions, the four possible locations for a given 
cell (within a coarse agglomeration) are denoted by the 
grey boxes in Figure 3. 

 

Figure 3. Four Possible Locations for a Cell within a 
Coarse Agglomeration in Two Dimensions 

Since the first pass of TOPOLOGY is a local operation 
on cells, no information about the past and future 
agglomerations in other regions of the domain is taken 
into consideration when creating ancestor-descendent 
relationships.  For this reason, some coarse 
agglomerations can result in trees that are non-binary, 
non-quad, or non-octree.  For instance, it is easy to be in a 
situation (after the first pass) where the coarse cells are 
arranged as shown in Figure 4. 

 

 
Figure 4. A Non-Quad Tree Coarse Cell Arrangement 
 

The coarse cells (C1, C2, and C3 given by solid lines) 
have been arranged in such a way that indeterminate 
behavior for neighbors exists for the coarse cells.  For 
example, C2 has two neighbors to its right.  The second 
pass corrects such structural problems associated with 
indeterminate behavior for neighbors of coarse cells.  In 
particular, the second pass has N-dimensional subphases.  
Each subphase, s, corrects the (N – s) dimensional 
structures, planes, lines, and points.  Each subphase uses 
information from all the previous subphases to correctly 
place the coarse cells.  It is important to note that in the 
second pass, only neighbor relations are adjusted and not 
the coarse cells (which were defined in the first pass).  For 
example, in two dimensions, the problem illustrated in 
Figure 4 can be fixed by (i) adjusting the face neighbors 
so that cell C2 “slides” down half of a coarse grid cell and 
(ii) making sure the neighbors for all local coarse cells 
reflect this slide (see Figure 5). 

 

 

Figure 5. A Fix for a Non-Quad Tree 
 Coarse Cell Arrangements 

 
A heuristically complex procedure is used to compute 

these corrections.  Our correction procedure utilizes the 
information about the (faces, edges, and corners of) 
neighbors of the coarse cells’ descendents to establish 
neighbors at the coarse level.  For instance, to find the 
neighbors for C2 (shown in Figure 4), we utilize the 
information for neighbors of cells 1, 2, 5, 6, 9, 10, 11, and 
12. 

In our topology-based algorithm, a new coarse level is 
created in the first pass and neighbors of coarse cells are 
identified in the second pass.  The second pass rearranges 
the grid somewhat.  The degree to which the domain of 
coarse cells is rearranged is bounded by the fine-cell sized 
moves.  The degree to which a coarse level “fits” a fine 
level can be measured by the number of ancestor-
descendent relationships that are established verses the 
number which could be established.  This measure, 
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however, is not very precise since the ancestor cells are 
logically at coarser resolutions.  In addition, since the 
ancestor cells’ bounding boxes are approximated, they 
may geometrically be larger than the strict union of fine 
cells involved.  In this case, there are no perfect spatial 
measurement that can capture what is being created.  We 
have defined a reasonable measure, called percentage 
filled, which measures the non-empty volume of a cell. 

2. Experiments 

Due to space limitations, we describe the performance 
of the GRID and TOPOLOGY algorithms on one 
scientific data set (see [2] for more results).  Our data set, 
called Djehuty-50gb, depicts a star in its mid-life and 
contains readings in point locations of a continuous 
medium (see Figure 6).  The data set is represented as 
zones (i.e., small cubes with 8 nodes).  Values of variables 
are associated either with each node (called a nodal 
variable) or with each zone (called a zonal variable).  
Djehuty-50gb has 7,840K zones, 18 variables, and 25 
time steps. 

 

 

Figure 6. The Djehuty-50gb Data Set 
 
Table 1 lists the number of levels needed to build a 

hierarchy for Djehuty-50gb along with their cell 
populations.  TOPOLOGY requires more levels to 
complete the hierarchy than GRID since the former 
approach needs to consider the underlying topology each 
time it agglomerates cells.  This consideration causes 
TOPOLOGY to reach levels where it can only 
agglomerate a few cells (as opposed to GRID where most 
of the time it can agglomerate many grid cells together).  

Table 2 presents the minimum, average, and maximum 
number of children for nodes in each level of the GRID 
and TOPOLOGY hierarchies for Djehuty-50gb.  As 
expected, the topology-based algorithm is able to 
agglomerate fewer cells (on average) as it builds a 
hierarchy.  This is not the case for the grid-based 
algorithm, where the average number of children can 
equal the maximum number of children as the hierarchy is 
built (e.g., level 3 in Table 2 �XQGHU�WKH�*5,'�FROXPQ�� 

Table 1. Number of Cells per Level for Djehuty-50gb 

Level TOPOLOGY GRID 
0 7840K 7840K 
1 980850 980000 
2 125462 131144 
3 17356 16393 
4 2751 2401 
5 578 400 
6 166 108 
7 54 20 
8 24 4 
9 9 1 

10 5  
11 2  
12 1  

 
Table 2. Number of Children in Djehuty-50gb’s 

Hierarchies (TOP = TOPOLOGY) 

Min # of 
Children 

Avg # of 
Children 

Max # of 
Children Level 

TOP GRID TOP GRID TOP GRID 
0 0 0 0.00 0.00 0 0 
1 4 8 7.99 8.00 8 8 
2 2 2 7.82 7.47 8 8 
3 1 8 7.23 8.00 8 8 
4 1 1 6.31 6.83 8 8 
5 1 1 4.76 6.00 8 8 
6 1 1 3.48 3.70 8 8 
7 1 2 3.07 5.40 8 8 
8 1 4 2.25 5.00 7 8 
9 1 4 2.67 4.00 5 4 

10 1  1.80  3  
11 1  2.50  4  
12 2  2.00  2  

 
Table 3 presents the minimum, average, and maximum 

percentage of non-empty space in the spatial bounding-
box of cells in each level of the GRID and TOPOLOGY 
hierarchies for Djehuty-50gb.  The minimum percentage 
filled shows the bad quality of the original grid structure.  
That is, there are fine grid cells (level 0) that are only 
1.90% filled (i.e., they are 98.10% empty!).  These grid 
cells are in the boundaries of the star in our data sets.  The 
maximum percentage filled illustrates the good quality of 
the grid structure.  That is, there are fine grid cells (level 
0) that do not have any empty space.  These grid cells are 
in the center of the star in our data sets.  But even then, 
the fine cells are not completely full (only 98.09%).  The 
average percentage filled shows how close the fit of 
coarse cells are to their spatial bounding boxes (the higher 
the percentage the better the fit).  The root cell has the 
best average percentage filled of about 52%. 



Table 3. Percent Filled in Djehuty-50’s Hierarchies 
(TOP = TOPOLOGY) 

Min % Filled Avg % Filled Max % Filled 
Level 

TOP GRID TOP GRID TOP GRID 
0 1.90 1.90 33.38 33.38 98.09 98.09 
1 0.98 2.04 31.24 31.27 96.93 96.00 
2 0.50 2.31 30.75 29.96 95.32 92.36 
3 0.26 3.48 28.46 30.25 86.62 93.06 
4 0.14 1.95 24.08 26.91 71.51 74.76 
5 0.08 1.42 17.65 24.20 64.25 58.92 
6 0.20 1.42 14.56 14.27 55.66 72.40 
7 0.38 4.36 14.58 20.50 38.49 44.11 
8 2.43 37.68 12.75 38.81 34.22 42.18 
9 0.44 52.35 14.52 52.35 32.09 52.35 

10 0.44  16.52  34.83  
11 10.01  30.90  51.79  
12 52.35  52.35  52.35  
 
For Djehuty-50gb, the total number of cells in 

hierarchies built by TOPOLOGY and GRID are 8967258 
and 8970471, respectively.  The percentages of leaf and non-
leaf cells for both hierarchies are about 87.4% and 12.6%, 
respectively.  Note that even though the TOPOLOGY 
hierarchy is capturing more information from the data set, 
it has the same percentage of non-leaf cells as the GRID 
hierarchy.  Moreover, the storage sizes for the hierarchies 
generated by both algorithms are the same (5.02 
gigabytes).  However, the memory requirement for 
TOPOLOGY is more than GRID since the former needs 
to establish the neighbor information for the coarse cells.  
For Djehuty-50gb, the memory requirements for 
TOPOLOGY and GRID are 6.46 and 5.12 gigabytes, 
respectively.  Finally, the hierarchies for TOPOLOGY 
and GRID were built in 83.8 and 6187.9 minutes, 
respectively.  This difference is partly due to the use of a 
simple linear search in the GRID algorithm. 

3. Future work 

In our top-down approach, we are considering more 
intelligent partitioning algorithms such as K-d and AVL 
trees.  For our grid-based algorithm, we are exploring 
better searching strategies.  For example, the simple linear 
search for cells can be replaced with hashing techniques 
that effectively decrease the number of cells to be 
examined.  Our topology-based algorithm relies on strictly 
rectilinear (i.e., hexahedral) meshes and an “ octree like”  
structure for the agglomerated levels.  To remove these 
strict assumptions, we are exploring the use of adaptive 
meshes. In particular, we are examining ALE (short for 
Arbitrary Lagrangian–Eulerian) meshes [3], where the 
grid cells (most importantly the finest level cells) can be 
of arbitrary polygonal shapes instead of hexahedrals.  An 
ALE mesh will ensure that the grid better conforms to the 
complex shapes such as tetrahedrons.  This new version of 

our topology-based algorithm will have a more 
complicated data structure but a less complex neighbor-
finding algorithm. 

4. Conclusion 

Creating scalable partitioning algorithms is an 
important part of handling large-scale scientific data sets.  
We describe the three-step evolution of a partitioning 
algorithm for such data sets.  Our first algorithm is a 
traditional top-down approach, which does not scale well 
to complex grid structures.  The shortcomings of this 
approach lead to our GRID algorithm, which utilizes a 
bottom-up approach to construct hierarchies that conform 
to local grid structures (imposed on data sets by 
scientists).  GRID generates hierarchies that are 
independent of the data’s distribution over the initial grid.  
However, it does not utilize the topology of the data.  Our 
TOPOLOGY algorithm alleviates this deficiency by 
considering the neighbor structure of fine cells in grid 
structures as well as the topological connections between 
these fine cells to create a hierarchy.  Our experimental 
results show the effectiveness of our algorithms [2]. 
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